Learning to recognize (un)promising simulated annealing runs: Efficient search procedures for job shop scheduling and vehicle routing
نویسندگان
چکیده
Simulated Annealing (SA) procedures can potentially yield nearoptimal solutions to many di cult combinatorial optimization problems, though often at the expense of intensive computational e orts. The single most signi cant source of ine ciency in SA search is the inherent stochasticity of the procedure, typically requiring that the procedure be rerun a large number of times before a near-optimal solution is found. This paper describes a mechanism that attempts to learn the structure of the search space over multiple SA runs on a given problem. Speci cally, probability distributions are dynamically updated over multiple runs to estimate at di erent checkpoints how promising a SA run appears to be. Based on this mechanism, two types of criteria are developed that aim at increasing search efciency: (1) a cuto criterion used to determine when to abandon unpromising runs and (2) restart criteria used to determine whether to start a fresh SA run or restart search in the middle of an earlier run. Experimental results obtained on a class of complex job shop scheduling problems show (1) that SA can produce high quality solutions for this class of problems, if run a large number of times, and (2) that our learning mechanism can signi cantly reduce the computation time required to nd high quality solutions to these problems. The results also indicate that, the closer one wants to be to the optimum, the larger the speedups. Similar results obtained on a smaller set of benchmark Vehicle Routing Problems with Time Windows (VRPTW) suggest that our learning mechanisms should help improve the e ciency of SA in a number of di erent domains.
منابع مشابه
Increasing The Efficiency of Simulated Annealing Search by Learning to Recognize (Un)Promising Runs
Simulated Annealing (SA) procedures can potentially yield near-optimal solutions to many difficult combinatorial optimization problems, though often at the expense of intensive computational efforts. The single most significant source of inefficiency in SA search is its inherent stochasticity, typically requiring that the procedure be rerun a large number of times before a near-optimal solution...
متن کاملAn integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کاملA Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations
In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...
متن کاملIdentifying and exploiting commonalities for the job-shop scheduling problem
For many combinatorial problems the solution landscape is such that nearoptimal solutions share common characteristics: the so-called commonalities or building blocks. We propose a method to identify and exploit these commonalities, which is based on applying multistart local search. In the first phase, we apply the local search heuristic, which is based on Simulated Annealing, to perform a set...
متن کاملA New Approach in Job Shop Scheduling: Overlapping Operation
In this paper, a new approach to overlapping operations in job shop scheduling is presented. In many job shops, a customer demand can be met in more than one way for each job, where demand determines the quantity of each finished job ordered by a customer. In each job, embedded operations can be performed due to overlapping considerations in which each operation may be overlapped with the other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 75 شماره
صفحات -
تاریخ انتشار 1997